Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz. j. med. biol. res ; 47(10): 826-833, 10/2014. graf
Artigo em Inglês | LILACS | ID: lil-722174

RESUMO

O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2±2 vs 7.9±1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4±2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3±2 vs 7.5±2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1±2 vs 7.4±2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca2+/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.


Assuntos
Animais , Masculino , Músculo Liso Vascular/fisiologia , Cadeias Leves de Miosina/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Vasoconstrição/fisiologia , Aorta Torácica , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacologia , Acilação/efeitos dos fármacos , Acilação/fisiologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Azepinas/farmacologia , Western Blotting , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Oxazóis/farmacologia , Oximas/farmacologia , Fenilcarbamatos/farmacologia , Fenilefrina/agonistas , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ratos Wistar , Ribonucleotídeos/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores
2.
Braz J Med Biol Res ; 47(10): 826-33, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25140811

RESUMO

O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2 ± 2 vs 7.9 ± 1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4 ± 2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3 ± 2 vs 7.5 ± 2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1 ± 2 vs 7.4 ± 2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca(2+)/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.


Assuntos
Músculo Liso Vascular/fisiologia , Cadeias Leves de Miosina/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Vasoconstrição/fisiologia , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacologia , Acilação/efeitos dos fármacos , Acilação/fisiologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Aorta Torácica , Azepinas/farmacologia , Western Blotting , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Masculino , Toxinas Marinhas , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Oxazóis/farmacologia , Oximas/farmacologia , Fenilcarbamatos/farmacologia , Fenilefrina/agonistas , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ratos Wistar , Ribonucleotídeos/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores
3.
Braz. j. med. biol. res ; 44(11): 1080-1087, Nov. 2011. ilus
Artigo em Inglês | LILACS | ID: lil-604269

RESUMO

Highly efficient mechanisms regulate intracellular calcium (Ca2+) levels. The recent discovery of new components linking intracellular Ca2+ stores to plasma membrane Ca2+ entry channels has brought new insight into the understanding of Ca2+ homeostasis. Stromal interaction molecule 1 (STIM1) was identified as a Ca2+ sensor essential for Ca2+ store depletion-triggered Ca2+ influx. Orai1 was recognized as being an essential component for the Ca2+ release-activated Ca2+ (CRAC) channel. Together, these proteins participate in store-operated Ca2+ channel function. Defective regulation of intracellular Ca2+ is a hallmark of several diseases. In this review, we focus on Ca2+ regulation by the STIM1/Orai1 pathway and review evidence that implicates STIM1/Orai1 in several pathological conditions including cardiovascular and pulmonary diseases, among others.


Assuntos
Humanos , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Doenças Cardiovasculares/metabolismo , Pneumopatias/metabolismo
4.
Braz J Med Biol Res ; 44(11): 1080-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22002090

RESUMO

Highly efficient mechanisms regulate intracellular calcium (Ca2+) levels. The recent discovery of new components linking intracellular Ca2+ stores to plasma membrane Ca2+ entry channels has brought new insight into the understanding of Ca2+ homeostasis. Stromal interaction molecule 1 (STIM1) was identified as a Ca2+ sensor essential for Ca2+ store depletion-triggered Ca2+ influx. Orai1 was recognized as being an essential component for the Ca2+ release-activated Ca2+ (CRAC) channel. Together, these proteins participate in store-operated Ca2+ channel function. Defective regulation of intracellular Ca2+ is a hallmark of several diseases. In this review, we focus on Ca2+ regulation by the STIM1/Orai1 pathway and review evidence that implicates STIM1/Orai1 in several pathological conditions including cardiovascular and pulmonary diseases, among others.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Doenças Cardiovasculares/metabolismo , Humanos , Pneumopatias/metabolismo , Proteína ORAI1 , Molécula 1 de Interação Estromal
5.
Braz. j. med. biol. res ; 42(11): 1058-1067, Nov. 2009. ilus
Artigo em Inglês | LILACS | ID: lil-529110

RESUMO

Oscillatory contractile activity is an inherent property of blood vessels. Various cellular mechanisms have been proposed to contribute to oscillatory activity. Mouse small mesenteric arteries display a unique low frequency contractile oscillatory activity (1 cycle every 10-12 min) upon phenylephrine stimulation. Our objective was to identify mechanisms involved in this peculiar oscillatory activity. First-order mesenteric arteries were mounted in tissue baths for isometric force measurement. The oscillatory activity was observed only in vessels with endothelium, but it was not blocked by L-NAME (100 µM) or indomethacin (10 µM), ruling out the participation of nitric oxide and prostacyclin, respectively, in this phenomenon. Oscillatory activity was not observed in vessels contracted with K+ (90 mM) or after stimulation with phenylephrine plus 10 mM K+. Ouabain (1 to 10 µM, an Na+/K+-ATPase inhibitor), but not K+ channel antagonists [tetraethylammonium (100 µM, a nonselective K+ channel blocker), Tram-34 (10 µM, blocker of intermediate conductance K+ channels) or UCL-1684 (0.1 µM, a small conductance K+ channel blocker)], inhibited the oscillatory activity. The contractile activity was also abolished when experiments were performed at 20°C or in K+-free medium. Taken together, these results demonstrate that Na+/K+-ATPase is a potential source of these oscillations. The presence of α-1 and α-2 Na+/K+-ATPase isoforms was confirmed in murine mesenteric arteries by Western blot. Chronic infusion of mice with ouabain did not abolish oscillatory contraction, but up-regulated vascular Na+/K+-ATPase expression and increased blood pressure. Together, these observations suggest that the Na+/K+ pump plays a major role in the oscillatory activity of murine small mesenteric arteries.


Assuntos
Animais , Masculino , Camundongos , Endotélio Vascular/enzimologia , Hipertensão/fisiopatologia , Artérias Mesentéricas/enzimologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Resistência Vascular/fisiologia , Endotélio Vascular/fisiologia , Inibidores Enzimáticos/farmacologia , Hipertensão/induzido quimicamente , Artérias Mesentéricas/fisiologia , Ouabaína/farmacologia
6.
Braz J Med Biol Res ; 42(11): 1058-67, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19820882

RESUMO

Oscillatory contractile activity is an inherent property of blood vessels. Various cellular mechanisms have been proposed to contribute to oscillatory activity. Mouse small mesenteric arteries display a unique low frequency contractile oscillatory activity (1 cycle every 10-12 min) upon phenylephrine stimulation. Our objective was to identify mechanisms involved in this peculiar oscillatory activity. First-order mesenteric arteries were mounted in tissue baths for isometric force measurement. The oscillatory activity was observed only in vessels with endothelium, but it was not blocked by L-NAME (100 microM) or indomethacin (10 microM), ruling out the participation of nitric oxide and prostacyclin, respectively, in this phenomenon. Oscillatory activity was not observed in vessels contracted with K+ (90 mM) or after stimulation with phenylephrine plus 10 mM K+. Ouabain (1 to 10 microM, an Na+/K+-ATPase inhibitor), but not K+ channel antagonists [tetraethylammonium (100 microM, a nonselective K+ channel blocker), Tram-34 (10 microM, blocker of intermediate conductance K+ channels) or UCL-1684 (0.1 microM, a small conductance K+ channel blocker)], inhibited the oscillatory activity. The contractile activity was also abolished when experiments were performed at 20 degrees C or in K+-free medium. Taken together, these results demonstrate that Na+/K+-ATPase is a potential source of these oscillations. The presence of alpha-1 and alpha-2 Na+/K+-ATPase isoforms was confirmed in murine mesenteric arteries by Western blot. Chronic infusion of mice with ouabain did not abolish oscillatory contraction, but up-regulated vascular Na+/K+-ATPase expression and increased blood pressure. Together, these observations suggest that the Na+/K+ pump plays a major role in the oscillatory activity of murine small mesenteric arteries.


Assuntos
Endotélio Vascular/enzimologia , Hipertensão/fisiopatologia , Artérias Mesentéricas/enzimologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Resistência Vascular/fisiologia , Animais , Endotélio Vascular/fisiologia , Inibidores Enzimáticos/farmacologia , Hipertensão/induzido quimicamente , Masculino , Artérias Mesentéricas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Ouabaína/farmacologia
7.
J Anat ; 212(1): 31-41, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18067546

RESUMO

During embryo implantation, invasive trophoblast cells mediate embryo invasion into the decidualized stroma, forming a rich network of lacunae that connect the embryonic tissues to the maternal blood vessels. Placentation is probably guided by the composition and organization of the endometrial extracellular matrix. Certain pathological conditions that occur during pregnancy, including diabetes, have been linked to abnormal placental morphology and consequent fetal morbidity. We used immunoperoxidase techniques to identify members of the collagen, proteoglycan and glycoprotein families in the various compartments of the rat placenta and to determine whether experimentally induced diabetes affects placental morphology and alters the distribution of these molecules during pregnancy. Single injections of alloxan (40 mg kg(-1) i.v.) were used to induce diabetes on day 2 of pregnancy in Wistar rats. Placentas were collected on days 14, 17, and 20. Type I and III collagen, as well as the proteoglycans decorin and biglycan, were found to be distributed throughout the placentas of control and diabetic rats. In both groups, laminin expression decreased at the end of pregnancy. In contrast, fibronectin was detected in the labyrinth region of diabetic rats at all gestational stages studied, whereas it was detected only at term pregnancy in the placentas of control rats. These results show for the first time that some extracellular matrix molecules are modulated during placental development. However, as diabetic rats presented increased fibronectin deposition exclusively in the labyrinth region, we speculate that diabetes alters the microenvironment at the maternal-fetal interface, leading to developmental abnormalities in the offspring.


Assuntos
Diabetes Mellitus Experimental/patologia , Diabetes Gestacional/patologia , Proteínas da Matriz Extracelular/análise , Placentação , Animais , Biglicano , Colágeno Tipo I/análise , Colágeno Tipo III/análise , Decorina , Endométrio/química , Feminino , Fibronectinas/análise , Técnicas Imunoenzimáticas , Laminina/análise , Placenta/química , Gravidez , Proteoglicanas/análise , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...